Data Science Training Institutes in Khammam with Placements assistance . Data Science Real time Projects in khammam and Hyderabad. Contact: 8886661866
DATA
SCIENCE COURSE SYLLABUS
MODULE -1 :
FUNDAMENTALS OF PROGRAMMING
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science Introduction
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Data Structures
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Functions
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Numpy
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Matplotlib
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Pandas
<!--[if !supportLists]-->ü <!--[endif]-->Python for Data
Science: Computational Complexity
<!--[if !supportLists]-->ü <!--[endif]-->SQL
MODULE-2: DATA
SCIENCE: Exploratory Data Analysis and Data Visualization
<!--[if !supportLists]-->ü <!--[endif]--> Plotting for
exploratory data analysis (EDA)
<!--[if !supportLists]-->ü <!--[endif]--> Linear Algebra
<!--[if !supportLists]-->ü <!--[endif]--> Probability and
Statistics
<!--[if !supportLists]-->ü <!--[endif]--> Interview
Questions on Probability and statistics
<!--[if !supportLists]-->ü <!--[endif]--> Dimensionality
reduction and Visualization:
<!--[if !supportLists]-->ü <!--[endif]--> PCA(principal
component analysis)
<!--[if !supportLists]-->ü <!--[endif]--> (t-SNE)T-distributed
Stochastic Neighborhood Embedding
<!--[if !supportLists]-->ü <!--[endif]--> Interview
Questions on Dimensionality Reduction
MODULE-3: Fundamentals
of Natural Language Processing and Machine Learning
<!--[if !supportLists]-->ü <!--[endif]-->Real world problem:
Predict rating given product reviews on Amazon
<!--[if !supportLists]-->ü <!--[endif]-->Classification And
Regression Models: K-Nearest Neighbors
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
K-NN(K Nearest Neighbour)
<!--[if !supportLists]-->ü <!--[endif]-->Classification
algorithms in various situations
<!--[if !supportLists]-->ü <!--[endif]-->Performance
measurement of models
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
Performance Measurement Models
<!--[if !supportLists]-->ü <!--[endif]-->Naive Bayes
<!--[if !supportLists]-->ü <!--[endif]-->Logistic Regression
<!--[if !supportLists]-->ü <!--[endif]-->Linear Regression
<!--[if !supportLists]-->ü <!--[endif]-->Solving Optimization Problems
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
Logistic Regression and Linear Regression
MODULE-4: Machine Learning – II
(Supervised Learning Methods)
<!--[if !supportLists]-->ü <!--[endif]-->Support Vector
Machines (SVM)
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
Support Vector Machine
<!--[if !supportLists]-->ü <!--[endif]-->Decision Trees
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
decision Trees
<!--[if !supportLists]-->ü <!--[endif]-->Ensemble Models
MODULE-5: Feature
Engineering, Productionization and deployment of ML models
<!--[if !supportLists]-->ü <!--[endif]-->Featurization and
Feature engineering.
<!--[if !supportLists]-->ü <!--[endif]-->Miscellaneous Topics
MODULE-6 : ML Real World Case studies
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 1: Quora
question Pair Similarity Problem
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 2:
Personalized Cancer Diagnosis
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 3:Facebook
Friend Recommendation using Graph Mining
<!--[if !supportLists]-->ü <!--[endif]-->Case study 4:Taxi
demand prediction in New York City
<!--[if !supportLists]-->ü <!--[endif]-->Case study 5:
Stackoverflow tag predictor
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 6:
Microsoft Malware Detection
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 7: AD-CLICK
Prediction
MODULE-1: DATA MINING(Unsupervised Learning) and Recommender
systems + Real world case studies
<!--[if !supportLists]-->ü <!--[endif]-->Unsupervised
learning/Clustering
<!--[if !supportLists]-->ü <!--[endif]-->Hierarchical
clustering Technique
<!--[if !supportLists]-->ü <!--[endif]-->DBSCAN (Density based
clustering) Technique
<!--[if !supportLists]-->ü <!--[endif]-->Recommender Systems and
Matrix Factorization
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
Recommender Systems and Matrix Factorization.
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 8: Amazon
fashion discovery engine(Content Based recommendation)
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 9:Netflix
Movie Recommendation System (Collaborative based recommendation)
MODULE-8 : NEURAL
NETWORKS, COMPUTER VISION and DEEP LEARNING
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning:Neural
Networks.
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning: Deep
Multi-layer perceptrons
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning:
Tensorflow and Keras.
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning:
Convolutional Neural Nets.
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning: Long
Short-term memory (LSTMs)
<!--[if !supportLists]-->ü <!--[endif]-->Deep Learning:
Generative Adversarial Networks (GANs)
<!--[if !supportLists]-->ü <!--[endif]-->Encoder-Decoder Models
<!--[if !supportLists]-->ü <!--[endif]-->Attention Models in
Deep Learning
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions on
Deep Learning
MODULE-9: DEEP
LEARNING REAL WORLD CASE STUDIES
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 11: Human
Activity Recognition
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 10: Self
Driving Car
<!--[if !supportLists]-->ü <!--[endif]-->Case Study 12: Music
Generation using Deep-Learning
<!--[if !supportLists]-->ü <!--[endif]-->Interview Questions
For More details: +91 888
666 1866 / +91 888 666 1143 / +91 888
666 1964
Web: www.VenkysIT.com || www.AiResearchLabs.in
Mail: AiCourse.in@gmail.com
Write a public review